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Abstract

Qualitative and quantitative estimates for the fundamental frequency

of uniform and optimized tetrahedral truss platforms are determined. A

semiempirical equation is developed for the frequency of flee-free uni-

form trusses as a function of member material properties, truss di-

mensions, and parasitic (nonstructural) mass fraction Mp/Mt. Opti-

mized trusses with frequencies approximately two times those of uniform

trusses are determined by varying the crass-sectwnal areas of member

groups. Trusses with 3 to 8 rings, no parasitic mass, and member areas
up to 25 times the minimum area are optimized. Frequencies computed

for ranges of both Mp/Mt and the ratio of maximum area to minimum
area are normalized to the frequency of a uniform truss with no par-

asitic mass. The normalized frequency increases with the number of

rings, and both frequency and the ratio of maximum area to minimum

area decrease with increasing Mp/Mt. Frequency improvements that

are achievable with a limited number of member areas are estimated
for a 3-ring truss by using Taguchi methods. Joint stiffness knockdown

effects are also considered. Comparison of optimized and baseline uni-

form truss frequencies indicates that tailoring can significantly increase

structural frequency; maximum gains occur for trusses with low values

of Mp/Mt. This study examines frequency trends for ranges of struc-
tural parameters and may be used as a preliminary design guide.

Introduction

Lattice trusses are a logical choice for large space-

craft structures that require both high stiffness and

light weight. While uniform trusses (trusses that are
generated by uniform replication of a characteristic

cell through space) are inherently efficient structures

(ref. 1), higher performance, which may be required

for some applications, is attainable with nonuniform

trusses. One method used to design nonuniform
trusses is to tailor the relative position of the truss

nodes in a process called topological design (ref. 2).

Since many trusses require a regular pattern of nodes

on their surfaces, this technique may not be applica-
ble to some structures and is not investigated here.

Another method to improve the performance of a

truss with a given nodal arrangement is to tailor the

global truss stiffness and mass by varying the truss

member cross-sectional areas. This latter approach

is used here to improve the performance of a truss
platform.

Precise spacecraft pointing requirements for cer-

tain science missions, as well as separation of struc-

tural and attitude control system frequencies, dictate
that the fundamental frequency of the truss struc-

ture be maximized. Higher truss frequencies result

in lower dynamic amplitudes and faster damping of

disturbances. Therefore, spacecraft designers have a

particular interest in quantifying the potential im-

provement in the fundamental frequency of lattice

trusses. Because of its simple geometry, the tetra-
hedral truss is a common truss configuration that

is considered for space platforms and is examined

in this paper. Although the present study consid-

ers only flat truss platforms, the qualitative results

should also apply to trusses with a shallow curvature,
such as concepts developed for paraboloidal reflectors

and aerobrakes supported on doubly curved tetrahe-

dral trusses (refs. 3 and 4).

One common goal in structural optimization is
to minimize mass under a given set of frequency

and deflection constraints. However, minimum mass
is not an appropriate criterion for unconstrained

optimization of trusses with no parasitic, or non-

structural, mass. Th-e:global truss vibration frequen-

cies are proportional to the ratio of truss stiffness

and areal density, which are both proportional to the
cross-sectional areas of the truss members. The truss

frequencies are therefore independent of the absolute

magnitude of the member areas. For example, dou-

bling all member areas doubles both the truss stiff-

ness and areal density, which leaves the global fre-

quency unchanged. Therefore, the minimum mass
design of a uniform truss with no parasitic mass is
one in which all members have the minimum allow-

able area. This result does not help to quantify

the improvement in truss performance that can re-

sult from allowing nonuniform distribution of mem-

ber cross-sectional areas. The purpose of this study

is to address this issue by estimating the increase in



fundamentalfrequencythat is achievableby tailor-
ing the memberareasfor a nonuniformtrusswith
noparasiticmass,andthenconsideringtheeffectof
parasiticmassonthenonuniformtrussfrequency.

In thesection"UniformTrussFundamentalFre-
quency,"a closedform, semiempiricalexpression
(eq.(15))isdevelopedforthefundamentalfrequency
of a free-freeuniformtrussusinglaminatedplate
theoryanddatafrom finiteelementanalyses.This
equation,whichservesas a baselinefor the opti-
mizedtrussanalyses,ispresentedasanexplicitfunc-
tionof thetrussdimensions,parasiticmassfraction,
and trussmembermaterialproperties.In the sec-
tion "Near-OptimalTrussFundamentalFrequency,"
numericaloptimizationtechniquesareusedto de-
terminenonuniformconfigurationsfor trusseswith
threeto eightcircumferentialringsandnoparasitic
mass.Theterm "nearoptimal"is usedto describe
thesetrussesbecausetheyrepresentconvergedsolu-
tionsfromtheoptimizationprocessbut arenot nec-
essarilygloballyoptimalsolutions.Thechangesin
frequencydueto varyingparasiticmassfractionand
memberarearatioareestimated,andtheresultsare
comparedwith uniformtrussfrequencies.Thesec-
tion "InfluenceofPracticalConsiderationsonNear-
OptimalDesign"addressestwodesignconsiderations
that affectoptimizedtrussperformance.Taguchide-
signmethodsareusedto quantifythefrequencyim-
provementof a 3-ringtrussstructurewith limits on
thenumberof allowablememberareas.Trussjoint
stiffnessknockdowneffectsarealsomodeledfor the
3-ringtruss.

Thispaperprovidesstructuralperformancedata
overa widerangeof designparameters.Asa result,
this paperhasa broaderfocusthanmanyprevious
studiesandis intendedto serveasa preliminaryde-
signguideforspacecraftdesignersthat areconsider-
ingtheuseof tetrahedraltrussplatforms.Thisstudy
alsoprovidesadditionalinsightintothefundamental
questionofwhenoptimizationiswarranted.That is,
underwhatconditionsdoesthepotentialfrequency
increasejustify theadditionaltime,expense,andef-
fort thatdetaildesignandfabricationofanoptimized
structurewouldrequire?

Symbols

A

A

a

D-

d

cross-sectional area, m 2

ratio of cross-sectional area to

minimum area

truss planform area, m 2

truss bending stiffness, N-m

truss diameter across corners, m

E

EA

f

Y

h

J

L

l

M

n

P

P

Subscripts:

eft

joint

max

min

nom

opt

opt,0

P

strut

t

unif

unif, O

truss member elastic modulus, Pa

axial stiffness, N

truss fundamental frequency, Hz

ratio of truss frequency to frequency

of uniform truss with no parasitic
mass

truss depth, m

joint stiffness knockdown

truss member length, m

truss strut or joint length, m

truss mass, kg

number of circumferential truss

rings

empirical coefficients used to com-

pute frequency of uniform truss

correction term for frequency of
uniform truss with parasitic mass

truss areal density, kg/m 2

truss member mass density, kg/m a

effective value

joint value

maximum value

minimum value

nominal value

near-optimal truss

near-optimal truss with no parasitic
mass

parasitic mass

strut value

total_(structural plus parasitic)
mass

uniform truss

uniform truss with no parasitic
mass

Truss Geometry

The tetrahedral truss configuration that is evalu-
ated in this study is assembled from all equal-length

truss members. An example of the planar truss plat-

form and repeating cell is shown in figure l(a). Char-
acteristic dimensions of the truss are the diameter



acrosscornersd and the depth h. The members are

shown subdivided into 5 circumferential truss rings

(n = 5) in figure l(b) and are shown partitioned into

upper surface, core, and lower surface in figure 1 (c).

The truss members are assumed to be made up

of a strut with joints at each end that attach to the

truss nodes for assembly (fig. 2(a)). For the purposes

of preliminary analysis, the stiffness of the joints is

assumed to be equal to the strut stiffness. Parasitic

mass is included in this study to represent the mass

of the nodes and joints, as well as other distributed

systems that are attached to the truss. An example
of a distributed system is the array of hexagonal

panels shown in figure 2(b), which may be attached
to a truss to form a faceted reflector surface or a heat
shield for an aerobrake.

Uniform Truss Fundamental Frequency

In this section, a semiempirical equation (eq. (15))

for the natural frequency of a uniform truss is derived
by using laminated plate theory and finite element

data. Certain assumptions are made regarding the

distribution of parasitic mass to simplify analytical

modeling. This equation is written as an explicit

function of the truss dimensions, parasitic mass frac-

tion, and member material properties. The accuracy
of the equation is evaluated and discussed. Frequen-

cies from this equation provide a baseline for com-

parison with optimized truss frequencies.

Uniform Truss With No Parasitic Mass

Continuum expressions for the bending stiffness

D and areal density P of a uniform tetrahedral truss

are derived in reference 5. The truss bending stiffness
is derived by assuming that the core members have

infinite extensional stiffness and that the upper and

lower surfaces may be modeled as isotropic face

sheets. These expressions for D and P are

D = "-EAstrutL (1)
4

and

P ----6v/3 -pAstrut (2)
L

All members are assumed to have the same cross-

sectional area Astrut and length L and are assumed
to be fabricated from a material that has an elastic

modulus E and mass density p.

The natural frequency of an isotropic plate is

(ref. 6)

1 1
f = T (3)

The nondimensional term n is dependent on the vi-

bration mode number, plate shape, and boundary
conditions. Equation (3) has been used to predict

truss frequencies of truss platforms where the struc-

tural behavior is assumed to approximate that of a

thin plate (refs. 7 and 8). Since all the truss platforms
evaluated in this study have the same boundary con-

ditions and shape, _ is assumed to be a function of

the number of truss rings n. Substitution of equa-

tions (1) and (2) into equation (3) gives the equation

for the fundamental frequency of a uniform truss with

no parasitic mass as

i
Sunif,0= Vp (4)

As explained previously, the uniform truss frequency
is not dependent on the member area Astrut, since

both D and P are proportional to Astrut. The

relationship between the truss depth h and member

length is

L = h (5)

Substitution of equation (5) into equation (4) gives

1 _/e d'_-I 1
funif,0 = _ _,_,] _V p (6)

The relationship between the ratio of truss diameter

to depth d/h and n is

= (2n + 1) (7)

Substitution of equation (7) for d/h in equation (6)
results in

funif,0 = _-_- _ (2n q- 1)- 1d (8)

Incorporation of all constants (except the conversion
1

factor of 27r rad/cy.cle) and (2n + 1)- into g allows

equation (8) to be rewritten as

1 1 /-E-
/unif,0 = _ _V p (9)

The frequency is now a function of the truss dimen-

sions (d and n) and the member elastic modulus-

to-density ratio E/p. The conversion factor of
27r rad/cycle is kept separate to ensure that _ is
nondimensional.

The coefficient n is empirically determined from

finite element analyses of free-free uniform trusses



with noparasiticmassand1 to 10rings.A linear-
analysismodelis built from pinned-endaxial-force
elementsby usinga commercialfiniteelementcode
(ref.9). Thetrussmembersare2 m in length,with
an elasticmodulusof 1.23× 1011Pa and a mass
densityof 1348kg/m3(nominalpropertiesforahigh-
performancegraphite-epoxymaterial).A vibrational
analysisisperformedtodeterminethelowestflexible-
body frequencyof eachtruss. Empiricalvaluesof
n are computed from the finite element data in

appendix A and are listed in table 1. The mode

shape for the truss fundamental frequency, shown for
a 5-ring truss in figure 3, is an asymmetric, anticlastic

bending of the truss.

Uniform Truss With Parasitic Mass

Parasitic mass is assumed to represent node and

joint mass, reflector or aerobrake panels, or other

nonstructural distributed systems such as thermal

insulation. The only effect of parasitic mass is to
lower the truss frequency, since inclusion of parasitic

mass contributes nothing to the structural stiffness.

If the total (structural plus parasitic) mass is defined

as Mr, the frequency of a uniform truss with parasitic

mass is, from equation (3),

/-.----1 1 aJ l)
f = (io)

since the areal density P is equal to M/a, where a is

the truss planform area. Similarly, the frequency of
a uniform truss with no parasitic mass is

1 1 ! aD
I

f --= -_--_n-_ VMt - Mp (11)

where Alp is the parasitic mass. If parasitic mass is
distributed around a uniform truss in identical pro-

portions to the structural mass distribution, the con-

stants in equations (10) and (11) are equal. The

normalized frequency of a uniform truss with a pro-

portional parasitic mass distribution f may be writ-

ten as the ratio of equation (10) to equation (11),

which simplifies to

V Mp7 = (12)
MtV

where the parasitic mass fraction Mp/Mt is the ra-

tio of parasitic mass to total mass. The normalized

frequency f decreases as Mp/Mt increases, and as

M_,/IVIt approaches the limiting value of 1, f ap-

proaches 0 because almost all the mass is parasitic.

4

Since most truss structures do not have parasitic

mass that is distributed proportionally to structural

mass, equation (12) is only an approximation of the
true behavior of most trusses.

By subtracting a correction term 5 from

equation (12), which accounts for the nonpropor-

tional distribution of parasitic mass, the normalized
frequency of a uniform truss with parasitic mass is
defined as

K Mpfu.if = - 5
funif,O V

(13)

where funk is the frequency of a uniform truss with
a nonproportional parasitic mass distribution. The

analyses in appendix B show that many types of par-

asitic mass are accurately represented by an assumed
distribution in which the same mass is placed at each

truss interior node on both the upper and lower sur-
faces, and two-thirds of this mass is placed at each

perimeter node (in the outermost truss ring). This
nonproportional distribution of parasitic mass is used

to quantify the reduction in uniform truss frequency

due to parasitic mass. Rigid point masses are as-

signed to each truss node according to the nonpro-

portional distribution just described. Fundamental
frequencies are then computed with finite element

analyses for uniform trusses with from 1 to I0 rings

as Mp/Mt is varied from 0 to 0.95. These frequen-

cies are normalized by funif,0 and are plotted against
Mp/Mt in figure 4 for 1- to 5-ring trusses (the data
for 6- to 10-ring trusses are omitted for clarity). The

normalized frequency of a uniform truss with a pro-

portional parasitic mass distribution (eq. (12)) is also
shown as the uppermost curve in figure 4.

The difference bet_ween the normalized frequen-

cies with proportionally distributed parasitic mass

and nonproportionally distributed parasitic mass is

the correction term 5 in equation (13). The term 5
is computed for each of the 10 trusses and is shown

for 1- to 5-ring trusses in figure 5. Note that 6 ap-

proaches 0 as n increases. This trend indicates that
the difference between the proportionally distributed

parasitic mass and the nonproportionally distributed
parasitic mass has little effect on the fundamental

frequency of large trusses, whereas the difference in

parasitic mass distribution has a significant effect
for small trusses. A function 1 that equals 0 when

IThe authors are grateful to W. B. Fichter for the form

of 5 in equation (14).



Mp/Mt = 0 or 1 is chosen to provide a closed-form
approximation to 5. The function selected for 5 is

(14)

Empirical values of a and fl are computed from finite

element data in appendix A and are shown in table 1.

Equations (9), (13), and (14) are combined into a

closed-form equation for the fundamental frequency

of a free-free uniform tetrahedral truss,

c_(1 - _t )

x[1 (1-MPY 3]Mtt] J} (15)

and empirical _¢alues of _, _, and a are shown in ta-

ble 1. Equation (15) is applicable to trusses with in-

teger values of n from 2 to 10. In this study, uniform

truss frequencies computed with equation (15) are
used to provide baseline values for comparison with

fundamental frequencies of near-optimal trusses.

Verification

Accuracy of uniform truss frequencies predicted

with equation (15) is determined for 3- and 5-ring
trusses with various parasitic-mass distributions.

Finite element models of these trusses are gener-

ated with parasitic mass representing truss nodes

and joints and reflector or heat-shield panels. (See

fig. 2.) Each truss node is represented by a 0.39-kg
point mass, and each truss joint is represented by

a 0.21-kg Point mass. Each panel is represented by
three 4.08-kg point masses; these point masses are

located at the upper surface nodes where the panels
are attached. Two parasitic mass cases are evalu-

ated. The first case includes the node, joint, and

panel parasitic mass, and the second case includes

only the node and joint mass. In both cases, the truss

parasitic mass fraction is varied by uniformly varying
the member cross-sectional area from 6.45 × 10 -5 to
3.23 x 10 -4 m 2.

Normalized frequencies predicted with equa-

tion (15) and with data from finite element anal-

yses are plotted in figures 6(a) and (b) for 3- and

5-ring trusses. These plots show that equation (15)
accurately predicts the frequency of trusses with only

node and joint mass, but slightly overestimates the
frequency of trusses with nodes, joints, and pan-

els. Despite the simplified parasitic mass distribution

used to obtain equation (15), all predicted frequen-

cies are within 3 percent of the corresponding values

from finite element analyses. These results indicate

that equation (15) is sufficiently accurate for prelim-
inary design of tetrahedral truss platforms.

Since equation (15) is presented as an explicit

function of n, d, E/p, and Mp/Mt, it is very useful for
parametric analyses of uniform trusses. For example,

if the truss dimensions (n and d) are known for a

given application, the parameters _, _, and c_ are

found in table 1. Equation (15) is then used to
describe curves (similar to fig. 6) that are used as

a design plot to determine the maximum parasitic

mass fraction for a given fundamental frequency or

to determine the variation of truss frequency with

member E/p.

Near-Optimal Truss Fundamental

Frequency

In this section, numerical optimization techniques
are used to determine member cross-sectional area

tailoring schemes that increase the fundamental fre-
quencies of trusses with 3 to 8 rings. Initially, trusses

with no parasitic mass are evaluated. Also, the ratio
of the maximum cross-sectional area to the minimum

area of the truss members is constrained to be no

greater than 25. From these analytical results, esti-

mates are made of the variation in truss frequencies
due to the reduction of the ratio of the maximum area

to the minimum area from 25 to 5, 10, 15, and 20.

Finally, the reduction in optimized truss frequency

due to parasitic mass is evaluated.

Near-Optimal Truss With No Parasitic
Mass

The objective of these analyses is to determine

truss member cross-sectional areas of near-optimal

trusses, which have the highest attainable fundamen-

tal frequency. A numerical optimization routine, con-
tained in the finite element code of reference 9, is

used to maximize the lowest flexible-body frequency

of free-free trusses with 3 to 8 rings and no para-

sitic mass. To reduce the number of design variables,

the truss members are partitioned into groups that
each contain a small number of members. The mem-

bers within each group are required to have the same
cross-sectional area, but the areas are allowed to vary

between groups. The subdivision scheme partitions

each ring of the truss into upper surface, core, and

lower surface member groups; this scheme results in
a total number of member groups that is equal to

3 times the number of rings. Truss member group

numbers are assigned based on the ring number n

and the relative position of the group in the truss. In

5



trussringn, the upper surface member group number

is 3n-2, the core member group number is 3n-l, and

the lower surface group number is 3n. The 9 member
groups for a 3-ring truss are illustrated in figure 7.

The truss member group cross-sectional areas are

chosen as the design variables. Constraints imposed

on the design variables represent practical upper and
lower bounds on the member areas. The minimum

member area Ami n is 6.45 × 10 -5 m 2. In an ac-

tual application, this value would be determined from

considerations such as local member frequency or

buckling load, strut minimum-gage fabrication con-

straints, or member handling requirements. The nor-
malized member area A is as follows:

-- Astrut
A -=- (16)

Amin

where Astrut is the strut cross-sectional area. The
maximum norz_alized member area is calculated as
follows:

-- _ Amax (17)
Amax- Amin

where Amax is the maximum member area. In this

p__ortion of the_ study, Amax = 1.61 × 10 -3 m 2 and
Amax = 25; Amax represents the maximum variation
in the truss member areas, not the normalized areas

of the individual truss member groups.

The normalized frequency for a near-optimal truss
with no parasitic mass is defined as

fopt,0 --- fopt,0 (18)
funif,0

where fopt,0 is the fundamental frequency of an op-
timized truss with no parasitic mass. Normalized

member areas, determined from finite element and

numerical optimization analyses, are listed in table 2

with corresponding normalized frequencie__s for near-
optimal trusses with 3 to 8 rings and Amax = 25.

These near-optimal truss configurations all show sim-

ilar trends. Member groups in the truss interior
have large cross-sectional areas, because these mem-
bers have the lowest mass moment of inertia and the

largest impact on the truss bending stiffness. Ar-

eas of member groups towards the outermost truss

ring are all at or near minimum values, because these
members have the highest inertia and contribute the

least to the structural stiffness. In each case, the

normalized frequency of a near-optimal truss is about
two times that of a uniform truss with equal n, which

shows that optimization can have a significant ef-

fect on structural performance. Also, the normalized

6

near-optimal frequencies increase slightly as n in-

creases, because the number of member groups, and

thus the number of design variables, both increase.

To evaluate the sensitivity of truss frequencies
to variation in member cross-sectional area ratio,

normalized member areas of the near-optimal truss

configurations (computed for Amax = 25) in table 2

are linearly scaled to Amax = 5, 10, 15, and 20 as
follows:

=Am x-1( 1 m =25_1)+1 (19)24

The resulting truss configurations are then analyzed
with finite element methods to determine their fun-

damental frequencies. A surface plot of the normal-

ized frequencies is shown in figure 8 for ranges of both

Amax and n. Also shown are data for a uniform truss,

with Amax and normalized frequency both equal to 1.
These analyses show that the near-optimal truss fre-

quency decreases significantly with decreasing Amax.

Although larger member area ratios are beyond the

scope of the present study, the truss frequencies could

probably be increased beyond the levels presented
here if the area ratios were allowed to be larger

than 25. However, area ratios over 25 are probably

impractical for most applications.

Near-Optimal Truss With Parasitic Mass

To estimate the reduction in near-optimal truss

frequencies caused by parasitic mass, the truss con-
figurations presented in table 2 and computed from

equation (19) are analyzed with parasitic mass at the

truss nodes. Fundamental frequencies are computed
with finite element analyses for trusses with discrete

values of Mp/Mt from 0 to 0.95. The nonproportional

parasitic mass distribution developed in appendix B

for uniform trusses is again used to determine the

parasitic mass assigne_l to each truss node. The nor-

malized frequency for a near-optimal truss with par-
asitic mass is

fopt (20)
-fopt _ fu_if,0

where fopt is the frequency of a near-optimal truss
with parasitic mass.

The results of these analyses are shown in fig-

ure 9 for a 3-ring truss. Each curve in the figure

represents the performance of an optimized 3-ring
truss with a different member area ratio. The near-

optimal truss is identified as the truss that has the

highest frequency at any given value of Mp/Mt. The
area ratio of the near-optimal configuration decreases

as Mp/Mt increases. Furthermore, the curves in fig-
ure 9 suggest that area ratios greater than 25 would



only improvetrussperformanceif Mp/Mt were less
than 0.15. Since trusses with such low parasitic mass

fractions are unlikely in most practical applications,

allowing area ratios over 25 is probably not necessary.

The locus of normalized frequencies for the near-

optimal 3-ring truss is presented in figure 10 along
with the uniform truss frequencies computed from

equation (15). The frequency improvement from
structural optimization varies from over 80 percent

for Mp/Mt _- 0 to about 5 percent for Mp/Mt = 0.95.
These results indicate that optimization has a sig-
nificant impact on the fundamental frequency when

Mp/Mt is very low. For a truss with a high value

of Mp/Mt, optimization has a much smaller effect on
structural performance. Similar behavior is shown in

figure 11 for near-optimal trusses with 3 to 8 rings,

although the magnitude of the normalized frequency
does increase slightly with an increasing number of

rings.

Verification

Numerical optimization analyses are performed

for a 3-ring truss with fixed values of Mp/Mt = 0.25,
0.50, and 0.75 to evaluate the accuracy of the near-

optimal frequencies in figure 10. Two parasitic-mass

cases (node, joint, and panel parasitic mass, and only

node and joint mass) are used for these analyses.
Frequencies from the numerical optimization and

finite element analyses are shown in figure 12 and

are compared with the near-optimal truss frequencies

from figure 10. The optimized truss frequencies differ

by no more than 5 percent from the corresponding
computed values. The maximum normalized member

areas are computed from equation (16) for the four
optimized truss configurations in figure 12. These

values of Amax, shown in table 3, decrease as Mp/Mt
increases; this decrease reflects the trends in figure 9,

where the area ratio of the truss with the highest

frequency decreases with increasing Mp/M_. Thus,
these analyses confirm that the frequency estimates

presented in figures 9 to 11 accurately predict the
behavior of near-optimal trusses.

Influence of Practical Considerations on

Near-Optimal Design

Two practical considerations for truss design that

reduce performance from previously computed near-
optimal levels are examined in this section. The re-

ductions in frequency due to limits on the number

of member cross-sectional areas and joint stiffness

knockdown are determined for a 3-ring truss with
Am'ax -_- 5. Tagnchi design methods are used to eval-

uate the frequency improvement achievable with a

limited number of member areas. These configura-

tions are then analyzed to quantify the effect of joint
stiffness knockdown on truss frequency.

Taguchi Design Methods

Taguchi methods (ref. 10) have been successfully

applied to design optimization of systems and pro-
cesses in the automotive and consumer electronics

fields and have recently been used for design of
aerospace vehicles (ref. 11). The main advantage

of using Taguchi methods over other optimization

techniques is their simplicity, since Tagnchi methods

can be implemented with minimal effort with exist-

ing analysis tools. Also, unlike most numerical opti-

mization routines, the near-optimal design predicted
by this technique is insensitive to the configuration

selected as a starting point. The main disadvantage

of Taguchi methods is that the solution generated by

the analysis is not guaranteed to be the global opti-
mum. Also, every combination of design variables is

assumed to be feasible, which means that additional

constraints cannot be imposed during the optimiza-

tion process. One potential limitation of Taguchi

methods is that the design variables are forced to

have discrete values; these values divide the design

space into a matrix of discrete configurations. How-
ever, for many design applications, practical consid-

erations naturally restrict design variables to discrete

or binary values; in these cases, Taguchi methods are

most appropriate for design optimization.

Limited Number of Member Areas

The near-optimal truss member group areas cal-

culated in the numerical optimization analyses are

only constrained by upper and lower bounds on the

member area. Thus, members could have any value
between these limits, and the number of different

member areas is less than or equal to the number

of member groups. However, selection of member
cross-sectional areas and the number of different ar-

eas are probably limited by manufacturing and logis-
tical considerations. For example, the cross-sectional

areas of composite truss members of a given diameter

are constrained to discrete values by the layup of the

composite material. Such restrictions on the member

areas are likely to reduce the maximum performance
that is attainable through optimization.

The magnitude of the reduction in frequency is

evaluated for a 3°ring truss by restricting each nor-

malized member group area A to integer values from
1 to 5. Since there are 9 truss member groups, there

are 1.95 × 106 (59) possible combinations of design

variables. However, a near-optimal configuration can

be determined with only 54 separate finite element

7



analyseswith a two-iterationTaguchimethod.For
the first iteration,eachmembergrouphasa cross-
sectionalareaof 1,3, or 5. Fortheseconditeration,
groupswhereA = 1 from the first iteration are al-
lowed to be 1, 2, or 3. Similarly, groups in which

--- 3 are allowed to be 2, 3, or 4, and groups in
which A = 5 are allowed to be 3, 4, or 5.

Truss configurations from the Tagnchi analyses

are presented in the form A -- (123 456 789), where
each number in parentheses is the normalized cross-

sectional area of member groups 1 to 9 in a 3-ring

truss (shown in fig. 7). After the first iteration,
the normalized areas for the near-optimal config-

uration of a 3-ring truss with no parasitic mass

are A = (555 315 113) with a normalized frequency
of 1.25. After the second iteration, the near-optimal

configuration has A = (555 435 122) with a nor-

malized frequency of 1.32. The member groups in

the case with no parasitic mass show a wide range
of cross-sectional areas; stiffer members axe concen-

trated in ring 1 and in the upper and lower sur-

face members of ring 2. Members with smaller areas
are located in the core of ring 2 and in all levels of

ring 3. This two-iteration process is repeated for two
parasitic-mass cases; node and joint mass, and node,

joint, and panel mass. Predicted truss configurations

from the Taguchi analyses are shown in table 4 with
normalized frequencies and parasitic mass fractions

computed from finite element analyses. The distri-
bution of truss member areas described here for the

case without parasitic mass is similar to trends ob-
served for the case with node and joint mass. How-

ever, almost all the members in the truss with node,

joint, and panel mass have the maximum possible
cross-sectional area. These analyses suggest that,

as the truss parasitic mass fraction increases, the

near-optimal truss configuration approaches a uni-
form truss in which all members have the same cross-

sectional area.

Normalized frequencies for the six trusses de-

scribed in this section are plotted in figure 13;

the estimated near-optimal truss frequency curve

(Amax = 5) is from previous finite element analyses

(fig. 9), and the uniform truss frequency curve is from
equation (15). As expected, these two curves are

bounding values for the Taguchi analysis data. The
estimated near-optimal frequency curve is computed

by allowing each of the 9 truss member groups to
have any cross-sectional area between the upper and
lower bounds. In contrast, the data points in fig-

ure 13 represent near-optimal frequencies that may

be obtained with only three or five different mem-

ber are_ constrained to integer multiples of the

minimum area. Thus, a fairly substantial perfor-

mance increase can be achieved for the 3-ring truss

through optimization with a limited number of mem-
ber cross-sectional areas. In fact, over 60 percent

of the maximum frequency improvement over a uni-

form truss can be attained by allowing each member

group to have one of only three different areas during

optimization.

Joint Stiffness Knockdown

Another consideration in design and analysis of
trusses is that the effective axial stiffness of the

truss member depends on the axial stiffness of the

structural joints and the axial stiffness of the strut
itself. Since the strut axial stiffness is typically

higher than the joint axial stiffness, the effective axial
stiffness of the truss member (two joints and a strut)
is lower than the axial stiffness of the strut alone.

The joint stiffness knockdown (ref. 12) is

J = 1 EAeff (21)
EAstrut

where EAstrut is the strut axial stiffness and EAeff
is the effective axial stiffness of the truss member as

follows:

/strut + 2/joint (22)
EAeff -- (lstrut/EAstrut) + (21joint/ EAjoint)

where/strut and/joint are the strut and joint lengths.

Since the joint stiffness knockdown is the same
for each member in a uniform truss, the frequency
reduction for a uniform truss is

fnom -- f = 1 - V_ - J (23)
fnom

where fnom is the uniform truss frequency with no

joint stiffness knockdown. However, the joint stiff-
ness knockdown is different for each different mem-

ber cross-sectional area in optimized trusses, and a
closed-form solution is not available to determine the

frequency reduction. To estimate the effect of joint
stiffness knockdown on the performance of nonuni-

form, near-optimal trusses, the 3-ring truss config-

urations computed in the previous section are re-

analyzed to determine the frequency reduction due

to joint stiffness knockdo_a. Based on the assump-

tions that/strut = 5L/6, 2/join t = L/6, the strut and

joints are made of materials with equal moduli, and

Ajoint -_-- Amin, the joint stiffness knockdown is

A-1
J = _ (24)

A+5

8
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where A is the normalized strut area defined in

equation (16). This joint stiffness knockdown from

equation (30) isplotted against A in figure 14 and
varies from 0 for A = 1 to 0.40 for A -- 5. Normalized

frequencies for the near-optimal truss configurations

that include the joint stiffness knockdown are shown

in table 4 with corresponding percentage reductions

in frequency from the previous analyses without joint
stiffness knockdown.

About 45 percent of the members in the two

trusses with no parasitic mass have the maximum

cross-sectional area, and consequently, the maximum
joint stiffness knockdown of 0.40. Frequency reduc-

tions of 12 to 17 percent due to joint stiffness knock-

down are observed for these trusses. Roughly 60 per-
cent of the members in trusses that are modeled with

node and joint mass have the maximum joint stiffness
knockdown, and both trusses have frequency reduc-

tions of about i9 percent. Almost 90 percent of the

members in the trusses with node, joint, and panel
mass have the maximum joint stiffness knockdown.

These trusses have the largest frequency reductions--

about 20 percent. Frequency reductions, computed

from equation (23) with J = 0.40 approach a limiting
value of 22.54 percent.

Concluding Remarks

Qualitative and quantitative trends for uniform

and near-optimal tetrahedral truss platform frequen-

cies are presented and discussed. A closed-form
semiempirical equation is developed for the funda-

mental free-free vibration frequency of a uniform

tetrahedral truss platform over a range of truss sizes

and parasitic mass fractions. This equation may be

used by spacecraft designers to accurately and effi-
ciently predict the fundamental frequency of large

planar trusses without the time and expense of com-

putational methods. Since this equation is derived as

an explicit function of the design variables, it is very

useful for parametric analyses of uniform trusses and,
in this study, provides a baseline for comparison with

truss platforms that have been tailored to maximize

the natural frequency.

Numerical optimization techniques are used to de-

termine member area distributions that improve the

fundamental frequency of trusses over a wide range of

structural parameters. Fundamental frequencies that
are about two times the uniform truss frequencies are

achievable through optimization of trusses with no

parasitic mass and a set of truss member groups equal

to 3 times the number of truss rings. As the par-

asitic mass fraction increases, both the normalized

frequency and area ratio of the near-optimal truss
configuration decrease; the percent increase in per-

formance achievable through member area optimiza-

tion also decreases. However, a substantial increase

in truss frequency can be realized through optimiza-
tion with a limited number of different cross-sectional

areas for each member group. Analyses with Taguchi

design methods suggest that, for a 3-ring truss, over

60 percent of the maximum frequency improvement

can be achieved by optimizing with only three differ-
ent cross-sectional areas.

These analyses show that structural optimiza-
tion is much more beneficial for trusses with small

amounts of parasitic mass. Thus, as the structure

becomes more efficient in one sense (with a high par-
asitic mass fraction), optimization has less of an im-

pact on the structural performance. On the other

hand, optimization of an inefficient structure (with

a low parasitic mass fraction) can yield significant
increases in the fundamental frequency. Although

trusses are inherently efficient structures, some con-

sideration should always be given to using optimized

configurations to obtain the maximum possible per-
formance on orbit, and any potential increases in per-

formance must always he weighed against increases

in complexity, mass, and cost of the structure.

NASA Langley Research Center
Hampton, VA 23681-0001
September 28, 1994



Appendix A

Determination of Empirical Coefficients

_, fl, and

Empirical values for n, fl, and a are used in the
closed-form equation for the fundamental frequency

of free-free uniform trusses with 1 to 10 rings. These

empirical values are computed from finite element

data in this appendix. Closed-form equations axe

also generated for n, fl, and a as functions of n to
facilitate computer coding of equation (15).

Determination of

To determine empirical values for g, equation (9)

is rearranged to solve for a, giving

- t; -- 27rfunif,0dvf _ (A1)

Equation (A1) is used to compute _ for each truss
with the corresponding values of d and funif,0 (ta-

ble 5) from the finite element analyses described pre-

viously. Values of n are shown in table 5 and are

plotted against n in figure 15. Since n is asymptotic

for large values of n, a curve-fit is constructed that
consists of n raised to negative integer powers. A

computational mathematics program (ref. 13) is used

to compute coefficients for the curve-fit. The best-fit

equation for n (defined as having a root-mean-square
error less than 0.50 percent with the fewest number

of terms) is

= -0.0181 + 2.9778n -1 - 4.9461n -2

+ 4.8929n -3 _ 2.3455n -4 (A2)

The curve generated from equation (A2) is plotted

in figure 15 for comparison with the tabulated data.

Although n is continuous in equation (A2), only

integer values of n from 1 to 10 are used in this study.

Determination of _ and a

To determine empirical values for/3 and a, 6max

and associated values of _hlp/lklt, shown in table 5, are
estimated from the finite element data for 5 versus

Mp/Mt (fig. 5). Equation (14) is differentiated with
respect to Mp/Mt to derive analytical expressions for
5max and the associated -Mp/J_It as functions of fl

and a. These analytical expressions are

--_[15=5_ = 1 - (1 + fl)-l/fl (A3)

5max - aft (A4)
(1 + fl)l+l/fl

A numerical value of fl is computed from an iterative

solution of equation (A3), and a is then computed

directly from equation (A4). These computed values
of fl and a (table 5) force equation (14) to have the

same values of 5max and associated Mp/Mt as the

data plotted in figure 5. Computed values for fl and

a from these analyses are also plotted against n in

figures 16 and 17.

Curve-fits are made to the computed values in

table 5 to determine closed-form equations for fl and

a as functions of n. Since fl is asymptotic for large

values of n, a curve-fit for fl, consisting of n raised to

negative integer powers, is constructed as

fl = -0.2024 - 0.0656n -1 + 1.3163n -2

- 2.0915n -3 + 1.2318n -4 (A5)

The curve for fl generated by equation (A5) is also

plotted in figure 16 with the tabulated data. As with

equation (A2), equation (A5) is only valid for integer
values of n from 1 to 10.

Between n = 1 and 2, (fig. 16), fl = 0. From

equation (A4), a is indeterminate when fl = 0.
Thus, the plot of a versus n has a vertical asymptote

between n = 1 and 2, which means the curve for a

is discontinuous at this point. This observation is

verified by the data in figure 17, which show that,
in contrast to the positive value of a at n = 1, a

takes on large negative values as n approaches the

asymptote from above. To simplify formulation of an

equation for a, the data point at n = 1 is omitted and
a curve-fit is made to'-the remaining 9 data points.

This equation for a, which is asymptotic for large

values of n, is

a = -0.0050 + 0.3591n -1 - 7.8039n -2

+ 12.7195n -3 - 18.8335n -4 (A6)

The curve for a that is predicted by equation (A6)

is shown in figure 17 with the data from table 5.

Equation (A6) is only valid for values of integer n
from 2 to 10.
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Appendix B

Selection of Approximate Parasitic Mass

Distribution

Parasitic mass represents various nonstructural

systems and hardware, such as nodes, joints, and

reflector or aerobrake panels. Parasitic mass does not

contribute to the structural stiffness and only lowers

the truss natural frequency. The manner in which
parasitic mass is distributed among the truss nodes

affects the truss frequency by changing the transverse

and rotary inertia of the structure. Although most

common types of parasitic mass have near-uniform

distributions through the structure, minor differences

in their distributions must be modeled accurately if
analysis errors are-to be minimized. However, for

parametric analyses in support of preliminary design,
sufficient accuracy can be achieved by lumping all

near-uniform parasitic mass together and modeling

them with a single approximate mass distribution.
In this appendix, a mass distribution that provides a

reasonable approximation to the actual distribution

of node, joint, and panel mass is described.

Nodes and Joints

Although truss nodes are load-carrying compo-

nents, their designs are typically driven by truss geo-
metric requirements rather than structural efficiency

requirements. Thus, most of the truss node mass is

considered to be parasitic. Since each node is as-
sumed to have the same mass, the parasitic mass of

the truss nodes is uniformly distributed around the
truss.

Since the truss joints incorporate mechanisms

that are relatively massive, most of the truss joint
mass is also considered to be parasitic. The distri-

bution of joint parasitic mass is slightly nonuniform.
Because each truss interior node has 9 attached truss

members, the mass of 9 joints is associated with each

truss interior node. Each truss perimeter node (on

the outermost ring) has 4 to 7 attached members;
the average mass of the joints at perimeter nodes is
as follows:

Average joint mass _ 75n (Joint mass) (B1)
at perimeter node 12n + 3

where n is the number of rings in the truss. Dividing

equation (B1) by the mass of nine joints at each

interior "node yields the following ratio for the average

joint mass at a perimeter node to the average joint

mass at an interior node as a function of n (joint

masses cancel):

Average joint mass at perimeter node 25n

Average joint mass at interior node 36n + 9
(Be)

The ratio in equation (B2) asymptotically

approaches 25/36 for large values of n and is plot-

ted as a function of n in figure 18.

Panels

As with the joint mass, the panel mass has a

slightly nonuniform distribution. Each panel is at-

tached to three nodes on the truss upper surface.
Thus, one-third of the panel mass is located at each

attachment point. Since three panels are attached to

each interior node on the upper surface of the truss,

the total mass concentrated at each interior upper

surface node is equal to the mass of one panel. How-
ever, each perimeter node has either one or two at-

tached panels. An average value for the panel mass

associated with each perimeter node can be calcu-

lated by multiplying the total number of perimeter

panel attachments by one-third of the panel mass and

dividing the result by the total number of perimeter

upper surface nodes. The total number of perimeter
panel attachments is 9n + 3, and the total number of

perimeter upper surface nodes is 6n + 3. Thus,

Average upper surface panel 9n+3 (Pane_mass)mass at perimeter node - 6n + 3 x -

(B3)
Since each interior upper surface node has the mass of

one panel concentrated at it, the ratio of the average
panel mass at perimeter upper surface nodes to panel

mass at interior upper surface nodes is as follows:

(panel masses cancel)

Average upper surface panel mass at perimeter node 3n + 1
Upper surface panel mass at interior node = 6n + 3

(B4)
Equation (B4) approaches 3/6 for large values of n

and is plotted as a function of n in figure 18.

Figure 18 shows significant differences between
the ratios of perimeter-node parasitic mass to

interior-node parasitic mass for the three types of

parasitic mass considered here. Also, the panel mass

is located at only the upper surface nodes, while the
node mass and joint mass are distributed to all nodes.

Nevertheless, a single distribution may be selected

that adequately represents the three types of par-

asitic mass for preliminary analysis of truss vibra-

tion frequencies. Since the fundamental mode of a

tetrahedral truss platform is a plate-like mode, ro-
tary inertia effects should be small. Therefore, little

11



error shouldbe introducedif thepanelmassis dis-
tributedto bothupperandlowersurfacenodes,as
with the nodeandjoint mass.With this simplifica-
tion, theonlyparameterthat differsin thedistribu-
tionofthethreetypesofparasiticmassis theratioof
perimeter-nodemassto interior-nodemass.A com-
promisevaluefor this ratio isselectedbasedon the
finiteelementanalysisin thenextparagraph.

Fundamentalfrequenciesarecomputedfor uni-
form 3-ringtrusseswith node((}.39kg each),joint
(0.21kg each),and panel(12.25kg each)masses
addedin their exactdistributionsto thetrussnodes.
Thesedataaregeneratedforconfigurationswithand
withoutpanelsontheuppersurface,andtheresult-
ingdataareplottedin figure19.Differentvaluesof
parasiticmassfractionareachievedin theseanaly-
sesby uniformlychangingthecross-sectionalareaof
all trussmemberswhileholdingthe parasiticmass

constant.Alsoshownin thefigurearethreecurves
that aregeneratedfrom finite elementanalysesin
whichall parasiticmassisdistributedsuchthat each
perimeternodehaseither1/2, 2/3, or 1 timesthe
massof eachinteriornode;a fourthcurveis shown
with all the parasiticmassdistributedin the same
proportionasthe structuralmass(eq. (10)). The
curveforwhichtheperimeter-nodeparasiticmassto
interior-nodeparasiticmassratio is 2/3 closelyap-
proximatesthe3-ringtrussfrequencydatathat were
computedfor exactparasiticmassdistributions.As
shownin figure18,a perimeter-nodeparasiticmass
to interior-nodeparasiticmassratio of 2/3 closely
approximatesthe actualdistributionof trussjoint
massfor trusseswith upto 10rings.Therefore,the
parametricanalysesin thisreportareperformedwith
the assumptionthat all typesof parasiticmassare
distributedaccordingto a perimeter-nodeparasitic
massto interior-nodeparasiticmassratioof 2/3.

12
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Table 1. Empirical Coefficients for Natural Frequency
of 1- to 10-Ring Uniform Trusses

1
2
3
4
5
6
7
8
9

10

n funif,0, Hz a fl
142.16 0.5610
106.32

62.66
40.95
28.69
21.14
16.19
12.77
10.32

8.51

.6993
0.1886

-.0906
.5770
.4848
.4152
.3616
.3194
.2856
.2581
.2351

-.1403
-.1647
-.1772
-.1855
-.1907
-.1943
-.1963
-.1974

1.8950
-1.3636

-.5139
-.2775
-.1742
-.1175
-.0836
-.0617
-.0469
-.0364

Table 2. Normalized Member Areas and Frequencies for Near-Optimal Trusses With Mp -- 0 and Amax = 25

A for--

TrUSS

member group n = 3 n = 4 n = 5 n = 8
25.00

10
11

12

13
14
15

16
17
18

19
2O
21

22
23
24

opt,0

25.00
18.03
25.00

4.04
10.50
19.70

1.00
1.00
1.00

1.83

25.00
25.00
25.00

24.75
25.00
25.00

1.55
2.85
4.86

1.00
1.00
1.00

1.93

11.71
22.07

25.00
12.45
25.00

7.74
14.60
25.O0

1.00
1.00
1.00

1.00
1.00
1.00

1.96

n=6 n=7
25.00 25.00
14.30 11.70
15.92 13.68

25.00 25.00
14.30 11.70
25.00 25.00

24.74 25.0O
14.30 11.70
25.00 25.00

3.79 24.21
7.03 11.51

11.60 25.00

1.00 1.65
1.00 3.53
1.00 5.50

1.00 1.00
1.00 1.00
1.00 1.00

1.00
1.00
1.00

2.02 2.02

22.96
13.00
13.90

25.00
13.00
25.00

25.00
13.00
25.00

25.00
12.98
25.00

6.01
12.39
24.72

1.52
1.34
2.00

1.00
1.00
1.00

1.00
1.00
1.00

2.07
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Table 3. Trends in Predicted and Computed Amax for Near-Optimal 3-Ring Truss Configurations

Parasitic mass fraction

0.25

.50

.75

Estimated (fig. 9)

15

5

5

m

Amax, for--

Computed from finite element analysis

Node and joint mass

25
14

Node, joint, and panel mass

11

9

Table 4. Performance of Near-Optimal Truss Configurations (Amax = 5) With Limited
Number of Member Areas and With Joint Stiffness Knockdown

Case

No parasitic mass:
3 member areas

5 member areas

Node and joint

parasitic mass:
3 member areas
5 member areas

Node, joint, and panel

parasitic mass:
3 member areas

5 member areas

A for truss member group--

1 2 3

5 5 5

5 5 5

5 5 5
5 5 5

5 5 5

5 5 5

4 5

3 1

4 3

5 3

5 4

5 5

5 5

6 7 8

5 1 1

5 1 2

5 1 3
5 1 3

5 1 5

5 2 5

Limited number

of member areas

Mp / Mt fopt

0 1.25

0 1.32

0.44 0.81

.44 .82

0.72 0.51

.72 .52

With joint stiffness

knockdown

Percent

fopt reduction

1.10 12.00

1.10 16.67

0.66 18.52

.66 19.51

0.41 19.61
.41 21.15

Table 5. Empirical Coefficients for 1- to 10-Ring Uniform Trusses

d, m funif,0, Hz ,_ Mp/Mtl_=6m= 6max fl a7/

1
2

3
4

5

6

7
8

9

10

6

10
14

18

22

26

30

34
38

42

142.160

106.321
62.658

40.945

28.690

21.142
16.188

12.772

10.324

8.511

0.5610

.6993

.5770

.4848

.4152

.3616

.3194

.2856

.2581

.2351

0.5999

.6494

.6596

.6647

.6674

.6691

.6703

.6711
.6715

.6718

0.1203

.0476

.0286

.0183

.0125

.0089

.0065

.0049

.0038

.0O29

0.1886

-.0906

-.1403
-.1647

-.1772

-.1855

-.1907

-.1943

-.1963
-.1974

1.8950

-1.3636

-.5139
-.2775

-.1742

-.1175

-.0836

-.0617

-.0469
-.0364
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(a) With unit cell.

Figure 1. Tetrahedral truss platform.
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Truss ring
n=l

_ n = 2

n=3

(b) Subdivided into truss rings.

Figure 1. Continued.
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Upper
surface

Core

Lower
surface

(c) Subdivided into upper surface, core, and lower surface.

Figure 1. Concluded.
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Nod_

Strut --

Panel

Structural joint

(a) Truss-member detail. (b) Hexagonal panel array.

Figure 2. Tetrahedral truss platform details.
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Undeformed
structure

Deformed structure _

Figure 3. Mode shape for fundamental mode of free-free 5-ring truss platform.

1.00

.75

funif .50

.25
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n

1

2

...........

.............

..............

Mp
............. 'k_- _ (eq.(12))

• , . I , , • .. I i I I

.25 .50 .75 1.00

Parasitic mass fraction, Mp/M t

Figure 4. Normalized frequency for 1- to 5-ring uniform trusses.
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5

.15

.10

.05

0 .25 .50 .75 1.00

Parasitic mass fraction, Mp/M t

Figure 5. Correction term _ for 1- to 5-ring uniform trusses.

n

1

2

3

4

5
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1.00

.75

funif .50

.25

Predicted (eq. (15))

Finite element analysis with

exact parasitic mass distribution
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Figure 6. Predicted and computed normalized frequencies of uniform trusses.
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